Inverse problem for a nonlinear Helmholtz equation
نویسندگان
چکیده
منابع مشابه
An inverse problem for Helmholtz equation
This article is concerned with subsurface material identification for the 2-D Helmholtz equation. The algorithm is iterative in nature. It assumes an initial guess for the unknown function and obtains corrections to the guessed value. It linearizes the otherwise nonlinear problem around the background field. The background field is the field variable generated using the guessed value of the unk...
متن کاملAn inverse random source problem for the Helmholtz equation
This paper is concerned with an inverse random source problem for the one-dimensional stochastic Helmholtz equation, which is to reconstruct the statistical properties of the random source function from boundary measurements of the radiating random electric field. Although the emphasis of the paper is on the inverse problem, we adapt a computationally more efficient approach to study the soluti...
متن کاملAn Inverse Problem for a Nonlinear Schrödinger Equation
The existence of a local (in time) solution of (1.1) has been established by Ginibre and Velo [4], Kato [5], and others. For positive constant q, (1.1) may be considered as a model equation for the propagation of an intense laser beam through a medium with Kerr nonlinearity. The square of the transverse width of the incoming laser beam is proportional to q. Extensive investigations on the forma...
متن کاملA globally convergent method for a 3-D inverse medium problem for the generalized Helmholtz equation
A 3-D inverse medium problem in the frequency domain is considered. Another name for this problem is Coefficient Inverse Problem. The goal is to reconstruct spatially distributed dielectric constants from scattering data. Potential applications are in detection and identification of explosive-like targets. A single incident plane wave and multiple frequencies are used. A new numerical method is...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l?Institut Henri Poincare (C) Non Linear Analysis
سال: 2004
ISSN: 0294-1449
DOI: 10.1016/s0294-1449(03)00052-0